• 데이터 모델링(Data Modeling)
     







  • 데이터 모델의 구성요소





    - 엔티티(Entity)
     : 데이터베이스에 자료로 표현하려는 것
     : 개념이나 정보단위 같은 현실 세계의 대상체
     : 유형, 무형의 정보
     : 서로 연관된 하나 이상의 속성으로 구성

    - 속성(Attribute)
     : 데이터의 가장 작은 논리적 단위
     : 각 속성은 엔티티의 특성, 상태 등을 기술

    - 관계(Relation)
     : 데이터의 가장 작은 논리적 단위
     : 각 속성은 엔티티의 특성, 상태 등을 기술


'Major > Database' 카테고리의 다른 글

데이터베이스 - SQL  (0) 2015.11.25
데이터베이스 - 관계 대수  (0) 2015.11.25
데이터베이스 - 정규화  (2) 2015.11.24
데이터베이스 - 관계형 데이터베이스  (0) 2015.11.24
데이터베이스 - 기초  (3) 2015.11.24
  • 데이터베이스 
    : 여러 사용자가 원하는 정보를 얻기 위해서 모아둔 자료의 집합, 관련있는 데이터들의 집합

  • 데이터베이스 관리 시스템(DBMS)
    : 데이터를 편리하게 저장하고 효율적으로 관리하고 검색할 수 있는 환경을 제공해주는 소프트웨어
    : 데이터베이스의 생성과 관리를 담당하는 소프트웨어 패키지
    : 정의, 조작, 제어 기능

  • 데이터베이스 시스템(DBS)
    : 데이터베이스를 통해 데이터를 저장하고 관리하기 위한 목적으로 사용되는 일체의 시스템
    : 데이터베이스와 그를 관리하는 소프트웨어(DBMS, 응용 프로그램) 모두를 칭하는 용어
      

  • 스키마(Schema)
    : 데이터 구조와 제약조건에 대한 명세(specification)를 기술하는 것
    : 개체(entity), 속성(attribute), 관계(relationship)에 대한 정의와 이들이 유지해야 될 제약 조건(constraints)을 포함
    : 3단계 데이터베이스 구조






  • 데이터베이스 시스템의 구성요소




  • 데이터베이스 언어

    - 데이터 정의어(DDL)
     : 스키마를 정의하거나 수정할 목적으로 사용
     : CREATE, ALTER, DROP

    - 데이터 조작어(DML)
     : 데이터베이스 내의 데이터 연산을 위한 언어
     : INSERT, UPDATE, DELETE

    - 데이터 제어어(DCL)
     : 
    데이터베이스 내의 데이터를 올바르고 정확하게 유지
     : 보안, 무결성, 데이터 회복, 병행수행


'Major > Database' 카테고리의 다른 글

데이터베이스 - SQL  (0) 2015.11.25
데이터베이스 - 관계 대수  (0) 2015.11.25
데이터베이스 - 정규화  (2) 2015.11.24
데이터베이스 - 관계형 데이터베이스  (0) 2015.11.24
데이터베이스 - 데이터 모델  (0) 2015.11.24

엔디언(Endianness)은 컴퓨터의 메모리와 같은 1차원의 공간에 여러 개의 연속된 대상을 배열하는 방법을 뜻하며, 바이트를 배열하는 방법을 특히 바이트 순서(Byte order)라 한다.


엔디언은 보통 큰 단위가 앞에 나오는 
빅 엔디언(Big-endian)과 작은 단위가 앞에 나오는 리틀 엔디언(Little-endian)으로 나눌 수 있으며, 두 경우에 속하지 않거나 둘을 모두 지원하는 것을 미들 엔디언(Middle-endian)이라 부르기도 한다.


Big-Endian Little-Endian


바이트 순서

바이트 순서는 크게 빅 엔디언과 리틀 엔디언으로 나눌 수 있다. 빅 엔디언은 사람이 숫자를 쓰는 방법과 같이 큰 단위의 바이트가 앞에 오는 방법이고, 리틀 엔디언은 반대로 작은 단위의 바이트가 앞에 오는 방법이다.PDP-11과 같은 몇몇 아키텍처는 2바이트 단위와 1바이트 단위로 서로 다른 순서를 사용하기도 하는데 이들을 미들 엔디언이라 부른다. 다음은 이런 방법들을 비교한 것이다.

종류0x1234의 표현0x12345678의 표현
빅 엔디언12 3412 34 56 78
리틀 엔디언34 1278 56 34 12
미들 엔디언-34 12 78 56
또는
56 78 12 34

두 방법 중 어느 한 쪽이 다른 쪽과 비교해 압도적으로 좋거나 나쁘지는 않다고 알려져 있으며, 두 방법은 서로 다른 여러 아키텍처에서 서로 공존하고 있다. 그러나 x86 아키텍처가 리틀 엔디언을 쓰기 때문에, 오늘날 x86 아키텍처를 사용하는 대부분의 데스크톱 컴퓨터는 리틀 엔디언을 쓰며 이를 ‘인텔 포맷’이라 한다. 거꾸로 네트워크에서는 주소를 빅 엔디언으로 쓰는데, 역사적으로 라우팅이 전화를 거는 식으로 접두 부호로 이루어졌기 때문이다. 이의 영향으로 많은 프로토콜과 몇몇 파일 포맷이 빅 엔디언을 사용하고 있다. 모토로라 프로세서들은 일반적으로 빅 엔디언을 사용하며, ARM 프로세서들은 성능 향상을 위해 빅 엔디언과 리틀 엔디언을 선택할 수 있도록 되어 있다.

장단점

빅 엔디언은 소프트웨어의 디버그를 편하게 해 주는 경향이 있다. 사람이 숫자를 읽고 쓰는 방법과 같기 때문에 디버깅 과정에서 메모리의 값을 보기 편한데, 예를 들어 0x59654148은 빅 엔디언으로 59 65 41 48로 표현된다.

반대로 리틀 엔디언은 메모리에 저장된 값의 하위 바이트들만 사용할 때 별도의 계산이 필요 없다는 장점이 있다. 예를 들어, 32비트 숫자인 0x2A는 리틀 엔디언으로 표현하면 2A 00 00 00이 되는데, 이 표현에서 앞의 두 바이트 또는 한 바이트만 떼어 내면 하위 16비트 또는 8비트를 바로 얻을 수 있다. 반면 32비트 빅 엔디언 환경에서는 하위 16비트나 8비트 값을 얻기 위해서는 변수 주소에 2바이트 또는 3바이트를 더해야 한다. 보통 변수의 첫 바이트를 그 변수의 주소로 삼기 때문에 이런 성질은 종종 프로그래밍을 편하게 하는 반면, 리틀 엔디언 환경의 프로그래머가 빅 엔디언 환경에서 종종 실수를 일으키는 한 이유이기도 하다.

또한 가산기가 덧셈을 하는 과정은 LSB로부터 시작하여 자리 올림을 계산해야 하므로, 첫 번째 바이트가 LSB인 리틀 엔디언에서는 가산기 설계가 조금 더 단순해진다. 빅 엔디언에서는 가산기가 덧셈을 할때 마지막 바이트로부터 시작하여 첫 번째 바이트까지 역방향으로 진행해야 한다. 그러나 오늘날의 프로세서는 여러개의 바이트를 동시에 읽어들여 동시에 덧셈을 수행하는 구조를 갖고 있어 두 엔디언 사이에 사실상 차이가 없다.

바이 엔디언

몇몇 아키텍처는 빅 엔디언과 리틀 엔디언 중 하나를 선택할 수 있도록 설계되어 있고, 이를 바이 엔디언(Bi-endian)이라 부른다. ARMPowerPCDEC 알파MIPSPA-RISCIA-64 등은 바이 엔디언을 사용하는 대표적인 아키텍처이다. 이들 대부분은 컴퓨터가 시작된 상태에서 소프트웨어적으로 바이트 순서를 바꿀 수 있지만, 몇몇은 하드웨어에 내장된 펌웨어에서 바이트 순서를 선택해야 하는 경우도 있다.

미들 엔디언

종종 한 방향으로 순서가 정해져 있는 게 아니라, 이를테면 32비트 정수가 2바이트 단위로는 빅 엔디언이고 그 안에서 1바이트 단위로는 리틀 엔디언인 경우가 종종 있는데 이를 미들 엔디언(Middle-endian)이라 한다.VAX와 ARM에서는 배정도 부동 소수점 실수를 미들 엔디언으로 저장하며, PDP-11에서는 32비트 정수를 미들 엔디언으로 저장하는데 이를 PDP 엔디언이라 부르기도 한다.

비트 순서

보통 바이트나 옥텟은 원자적인 단위로 간주되지만 종종 비트 단위의 접근이 필요할 수 있다. 따라서 바이트 순서가 아니라 비트 순서를 따질 수도 있으나, 여러 가지 이유로 비트 순서는 상대적으로 덜 중요하다. 보통 메모리의 접근은 바이트 단위로 이루어지기 때문에 비트 단위의 접근에는 별도의 연산 과정이 필요한데, 이러한 연산 자체가 비트 순서에 대해 잘 정의되어 있기 때문에 비트를 접근하는 방법은 아키텍처에 중립적이다.

비트 순서와 비슷하게, 네트워크 프로토콜이나 파일 포맷 같이 저수준으로 내려 갈 경우 비트 단위의 데이터를 최상위 비트부터 채울 것인가 최하위 비트부터 채울 것인가 하는 문제가 있다. 예를 들어 C는 구조체에서 바이트보다 더 작은 단위의 변수를 선언할 수 있는 비트 필드를 지원하는데, 여러 개의 비트 필드가 배열되는 방법은 기계어를 생성하는 과정에서 중요해진다. 이때 최상위 비트(MSB)부터 채우는 것을 최상위 비트 우선, 최하위 비트(LSB)부터 채우는 것을 최하위 비트 우선이라 한다. 예를 들어 PNG와 GIF는 각각 최상위/최하위 비트 우선을 쓰는 대표적인 파일 포맷이다.

출처: 위키, http://genesis8.tistory.com/37
    

'Major > Network' 카테고리의 다른 글

네트워크 - Transport Layer  (0) 2015.12.09
네트워크 - Application Layer  (0) 2015.12.02
네트워크 - 기본  (0) 2015.12.01
MAC address  (0) 2015.11.16
OSI 7 계층  (0) 2015.11.15

MAC 주소

컴퓨터 네트워킹에서 매체 접근 제어 주소(MAC 주소), 이더넷 하드웨어 주소어댑터 주소는 대부분의 네트워크 어댑터(NIC)에 부착된 준고유 식별자이다. 특정한 네트워크 어댑터의 이름같이 동작하는 숫자이다. 그러므로 이를테면, 두 개의 서로 다른 컴퓨터에 있는 랜카드는 서로 다른 이름, 곧 서로 다른 MAC 주소를 가지고 있다. 라우터 안에 있는 여러 개의 랜카드, 같은 컴퓨터 안에 있는 이더넷 어댑터와 무선 어댑터도 이와 마찬가지로 적용된다. 그러나 오늘날 출시되는 대부분의 하드웨어에서는 MAC 스푸핑(MAC spoofing)을 통해 맥 주소를 바꿀 수 있다.

MAC은 총 48비트로 구성되어 있으며, 이 가운데 첫 24비트는 OUI(Organizational Unique Identifier) 제조업체의 식별코드 , NIC 제조업체의 정보 24비트를 뺀 나머지 24비트는 랜 카드의 정보를 담고 있다.

다음의 기술들이 MAC-48 식별자 형식을 사용한다:

EUI-64 식별자는 다음에 쓰인다:


컴퓨터가 네트워크상에서 서로를 구분하기 위해서는 각각의 일종의 주소가 필요하다. 편지를 서로 주고 받기 위해서는 각각의 건물이나 집에서 서로 다른 주소가 필요한 것처럼 컴퓨터 네트워크 상에서 이 역할을 담당하는 것이 바로 맥(Media Access Control) 주소이다.
물론 인터넷은 TCP/IP로 통신을 하며 이떄 IP주소를 사용하지만 이 IP주소를 다시 MAC으로 바꾸는 과정을 거친다. 이 과정을 ARP(Address Resolution Protocol)라고 한다.

출처: 위키


'Major > Network' 카테고리의 다른 글

네트워크 - Transport Layer  (0) 2015.12.09
네트워크 - Application Layer  (0) 2015.12.02
네트워크 - 기본  (0) 2015.12.01
Big-endian vs Little-endian  (0) 2015.11.16
OSI 7 계층  (0) 2015.11.15

Java Garbage Collection

지극히 개인적이고 주관적인 판단 기준을 먼저 밝힌다면, 가비지 컬렉션(Garbage Collection, 이하 GC)에 대해 잘 알고 있을수록 실력이 좋은 Java 개발자라고 생각합니다. GC 과정에 관심을 가질 정도라면 규모가 일정 이상인 애플리케이션을 제작해 본 경험이 있을 것입니다. 또, 어떤 GC 알고리즘을 선택할 것인지 고민할 정도면 스스로 제작한 애플리케이션의 특징을 정확히 이해하고 있다고 볼 수 있습니다. 이러한 판단 기준이 보편적이지는 않지만, GC에 대한 이해는 훌륭한 Java 개발자가 되기 위한 필수 조건이라는 데에는 별다른 이견이 없을 것입니다. 이 글에서는 GC 이론을 되도록 쉽게 소개하겠습니다. 피가 되고 살이 되는 글이 되기를 바랍니다.

가비지 컬렉션 과정 - Generational Garbage Collection

GC에 대해서 알아보기 전에 알아야 할 용어가 있다. 바로 'stop-the-world'이다. stop-the-world란, GC을 실행하기 위해 JVM이 애플리케이션 실행을 멈추는 것이다. stop-the-world가 발생하면 GC를 실행하는 쓰레드를 제외한 나머지 쓰레드는 모두 작업을 멈춘다. GC 작업을 완료한 이후에야 중단했던 작업을 다시 시작한다. 어떤 GC 알고리즘을 사용하더라도 stop-the-world는 발생한다. 대개의 경우 GC 튜닝이란 이 stop-the-world 시간을 줄이는 것이다.

Java는 프로그램 코드에서 메모리를 명시적으로 지정하여 해제하지 않는다. 가끔 명시적으로 해제하려고 해당 객체를 null로 지정하거나 System.gc() 메서드를 호출하는 개발자가 있다. null로 지정하는 것은 큰 문제가 안 되지만, System.gc() 메서드를 호출하는 것은 시스템의 성능에 매우 큰 영향을 끼치므로 System.gc() 메서드는 절대로 사용하면 안 된다(다행히도 NHN에서 System.gc() 메서드를 호출하는 개발자를 보진 못했다).

Java에서는 개발자가 프로그램 코드로 메모리를 명시적으로 해제하지 않기 때문에 가비지 컬렉터(Garbage Collector)가 더 이상 필요 없는 (쓰레기) 객체를 찾아 지우는 작업을 한다. 이 가비지 컬렉터는 두 가지 가설 하에 만들어졌다(사실 가설이라기보다는 가정 또는 전제 조건이라 표현하는 것이 맞다).

  • 대부분의 객체는 금방 접근 불가능 상태(unreachable)가 된다.
  • 오래된 객체에서 젊은 객체로의 참조는 아주 적게 존재한다.

이러한 가설을 'weak generational hypothesis'라 한다. 이 가설의 장점을 최대한 살리기 위해서 HotSpot VM에서는 크게 2개로 물리적 공간을 나누었다. 둘로 나눈 공간이 Young 영역과 Old 영역이다.

  • Young 영역(Yong Generation 영역): 새롭게 생성한 객체의 대부분이 여기에 위치한다. 대부분의 객체가 금방 접근 불가능 상태가 되기 때문에 매우 많은 객체가 Young 영역에 생성되었다가 사라진다. 이 영역에서 객체가 사라질때 Minor GC가 발생한다고 말한다.
  • Old 영역(Old Generation 영역): 접근 불가능 상태로 되지 않아 Young 영역에서 살아남은 객체가 여기로 복사된다. 대부분 Young 영역보다 크게 할당하며, 크기가 큰 만큼 Young 영역보다 GC는 적게 발생한다. 이 영역에서 객체가 사라질 때 Major GC(혹은 Full GC)가 발생한다고 말한다.

영역별 데이터 흐름을 그림으로 살펴보면 다음과 같다.

JavaGarbage1

그림 1 GC 영역 및 데이터 흐름도

위 그림의 Permanent Generation 영역(이하 Perm 영역)은 Method Area라고도 한다. 객체나 억류(intern)된 문자열 정보를 저장하는 곳이며, Old 영역에서 살아남은 객체가 영원히 남아 있는 곳은 절대 아니다. 이 영역에서 GC가 발생할 수도 있는데, 여기서 GC가 발생해도 Major GC의 횟수에 포함된다.

그렇다면 "Old 영역에 있는 객체가 Young 영역의 객체를 참조하는 경우가 있을 때에는 어떻게 처리될까?"라고 궁금해 하는 분도 더러 있을 것이다. 이러한 경우를 처리하기 위해서 Old 영역에는 512바이트의 덩어리(chunk)로 되어 있는 카드 테이블(card table)이 존재한다.

카드 테이블에는 Old 영역에 있는 객체가 Young 영역의 객체를 참조할 때마다 정보가 표시된다. Young 영역의 GC를 실행할 때에는 Old 영역에 있는 모든 객체의 참조를 확인하지 않고, 이 카드 테이블만 뒤져서 GC 대상인지 식별한다.

JavaGarbage2

그림 2 카드 테이블 구조

카드 테이블은 write barrier를 사용하여 관리한다. write barrier는 Minor GC를 빠르게 할 수 있도록 하는 장치이다. write barrirer때문에 약간의 오버헤드는 발생하지만 전반적인 GC 시간은 줄어들게 된다.

Young 영역의 구성

GC를 이해하기 위해서 객체가 제일 먼저 생성되는 Young 영역부터 알아보자. Young 영역은 3개의 영역으로 나뉜다.

  • Eden 영역
  • Survivor 영역(2개)

Survivor 영역이 2개이기 때문에 총 3개의 영역으로 나뉘는 것이다. 각 영역의 처리 절차를 순서에 따라서 기술하면 다음과 같다.

  • 새로 생성한 대부분의 객체는 Eden 영역에 위치한다.
  • Eden 영역에서 GC가 한 번 발생한 후 살아남은 객체는 Survivor 영역 중 하나로 이동된다.
  • Eden 영역에서 GC가 발생하면 이미 살아남은 객체가 존재하는 Survivor 영역으로 객체가 계속 쌓인다.
  • 하나의 Survivor 영역이 가득 차게 되면 그 중에서 살아남은 객체를 다른 Survivor 영역으로 이동한다. 그리고 가득 찬 Survivor 영역은 아무 데이터도 없는 상태로 된다.
  • 이 과정을 반복하다가 계속해서 살아남아 있는 객체는 Old 영역으로 이동하게 된다.

이 절차를 확인해 보면 알겠지만 Survivor 영역 중 하나는 반드시 비어 있는 상태로 남아 있어야 한다. 만약 두 Survivor 영역에 모두 데이터가 존재하거나, 두 영역 모두 사용량이 0이라면 여러분의 시스템은 정상적인 상황이 아니라고 생각하면 된다.

이렇게 Minor GC를 통해서 Old 영역까지 데이터가 쌓인 것을 간단히 나타내면 다음과 같다.

JavaGarbage3

그림 3 GC 전과 후의 비교

참고로, HotSpot VM에서는 보다 빠른 메모리 할당을 위해서 두 가지 기술을 사용한다. 하나는 bump-the-pointer라는 기술이며, 다른 하나는 TLABs(Thread-Local Allocation Buffers)라는 기술이다.

bump-the-pointer는 Eden 영역에 할당된 마지막 객체를 추적한다. 마지막 객체는 Eden 영역의 맨 위(top)에 있다. 그리고 그 다음에 생성되는 객체가 있으면, 해당 객체의 크기가 Eden 영역에 넣기 적당한지만 확인한다. 만약 해당 객체의 크기가 적당하다고 판정되면 Eden 영역에 넣게 되고, 새로 생성된 객체가 맨 위에 있게 된다. 따라서, 새로운 객체를 생성할 때 마지막에 추가된 객체만 점검하면 되므로 매우 빠르게 메모리 할당이 이루어진다.

그러나 멀티 스레드 환경을 고려하면 이야기가 달라진다. Thread-Safe하기 위해서 만약 여러 스레드에서 사용하는 객체를 Eden 영역에 저장하려면 락(lock)이 발생할 수 밖에 없고, lock-contention 때문에 성능은 매우 떨어지게 될 것이다. HotSpot VM에서 이를 해결한 것이 TLABs이다.

각각의 스레드가 각각의 몫에 해당하는 Eden 영역의 작은 덩어리를 가질 수 있도록 하는 것이다. 각 쓰레드에는 자기가 갖고 있는 TLAB에만 접근할 수 있기 때문에, bump-the-pointer라는 기술을 사용하더라도 아무런 락이 없이 메모리 할당이 가능하다.

간단하게 Young 영역에 대한 GC에 대해서 알아보았다. 위에서 이야기한 두 가지 기술(bump-the-pointer, TLABs)을 반드시 기억하고 있을 필요는 없다. 몰라도 쇠고랑 안차고 경찰 출동 안한다. 그러나 Eden 영역에 최초로 객체가 만들어지고, Survivor 영역을 통해서 Old 영역으로 오래 살아남은 객체가 이동한다는 사실은 꼭 기억하기 바란다.

Old 영역에 대한 GC

Old 영역은 기본적으로 데이터가 가득 차면 GC를 실행한다. GC 방식에 따라서 처리 절차가 달라지므로, 어떤 GC 방식이 있는지 살펴보면 이해가 쉬울 것이다. GC 방식은 JDK 7을 기준으로 5가지 방식이 있다.

  • Serial GC
  • Parallel GC
  • Parallel Old GC(Parallel Compacting GC)
  • Concurrent Mark & Sweep GC(이하 CMS)
  • G1(Garbage First) GC

이 중에서 운영 서버에서 절대 사용하면 안 되는 방식이 Serial GC다. Serial GC는 데스크톱의 CPU 코어가 하나만 있을 때 사용하기 위해서 만든 방식이다. Serial GC를 사용하면 애플리케이션의 성능이 많이 떨어진다.

그럼 각 GC 방식에 대해서 살펴보자.

Serial GC (-XX:+UseSerialGC)

Young 영역에서의 GC는 앞 절에서 설명한 방식을 사용한다. Old 영역의 GC는 mark-sweep-compact이라는 알고리즘을 사용한다. 이 알고리즘의 첫 단계는 Old 영역에 살아 있는 객체를 식별(Mark)하는 것이다. 그 다음에는 힙(heap)의 앞 부분부터 확인하여 살아 있는 것만 남긴다(Sweep). 마지막 단계에서는 각 객체들이 연속되게 쌓이도록 힙의 가장 앞 부분부터 채워서 객체가 존재하는 부분과 객체가 없는 부분으로 나눈다(Compaction).

Serial GC는 적은 메모리와 CPU 코어 개수가 적을 때 적합한 방식이다.

Parallel GC (-XX:+UseParallelGC)

Parallel GC는 Serial GC와 기본적인 알고리즘은 같지다. 그러나 Serial GC는 GC를 처리하는 스레드가 하나인 것에 비해, Parallel GC는 GC를 처리하는 쓰레드가 여러 개이다. 그렇기 때문에 Serial GC보다 빠른게 객체를 처리할 수 있다. Parallel GC는 메모리가 충분하고 코어의 개수가 많을 때 유리하다. Parallel GC는 Throughput GC라고도 부른다.

다음 그림은 Serial GC와 Parallel GC의 스레드를 비교한 그림이다.JavaGarbage4

그림 4 Serial GC와 Parallel GC의 차이 (이미지 출처: "Java Performance", p. 86)

Parallel Old GC(-XX:+UseParallelOldGC)

Parallel Old GC는 JDK 5 update 6부터 제공한 GC 방식이다. 앞서 설명한 Parallel GC와 비교하여 Old 영역의 GC 알고리즘만 다르다. 이 방식은 Mark-Summary-Compaction 단계를 거친다. Summary 단계는 앞서 GC를 수행한 영역에 대해서 별도로 살아 있는 객체를 식별한다는 점에서 Mark-Sweep-Compaction 알고리즘의 Sweep 단계와 다르며, 약간 더 복잡한 단계를 거친다.

CMS GC (-XX:+UseConcMarkSweepGC)

다음 그림은 Serial GC와 CMS GC의 절차를 비교한 그림이다. 그림에서 보듯이 CMS GC는 지금까지 설명한 GC 방식보다 더 복잡하다.

JavaGarbage5

그림 5 Serial GC와 CMS GC(이미지 출처)

초기 Initial Mark 단계에서는 클래스 로더에서 가장 가까운 객체 중 살아 있는 객체만 찾는 것으로 끝낸다. 따라서, 멈추는 시간은 매우 짧다. 그리고 Concurrent Mark 단계에서는 방금 살아있다고 확인한 객체에서 참조하고 있는 객체들을 따라가면서 확인한다. 이 단계의 특징은 다른 스레드가 실행 중인 상태에서 동시에 진행된다는 것이다.

그 다음 Remark 단계에서는 Concurrent Mark 단계에서 새로 추가되거나 참조가 끊긴 객체를 확인한다. 마지막으로 Concurrent Sweep 단계에서는 쓰레기를 정리하는 작업을 실행한다. 이 작업도 다른 스레드가 실행되고 있는 상황에서 진행한다.

이러한 단계로 진행되는 GC 방식이기 때문에 stop-the-world 시간이 매우 짧다. 모든 애플리케이션의 응답 속도가 매우 중요할 때 CMS GC를 사용하며, Low Latency GC라고도 부른다.

그런데 CMS GC는 stop-the-world 시간이 짧다는 장점에 반해 다음과 같은 단점이 존재한다.

  • 다른 GC 방식보다 메모리와 CPU를 더 많이 사용한다.
  • Compaction 단계가 기본적으로 제공되지 않는다.

따라서, CMS GC를 사용할 때에는 신중히 검토한 후에 사용해야 한다. 그리고 조각난 메모리가 많아 Compaction 작업을 실행하면 다른 GC 방식의 stop-the-world 시간보다 stop-the-world 시간이 더 길기 때문에 Compaction 작업이 얼마나 자주, 오랫동안 수행되는지 확인해야 한다.

G1 GC

마지막으로 G1(Garbage First) GC에 대해서 알아보자. G1 GC를 이해하려면 지금까지의 Young 영역과 Old 영역에 대해서는 잊는 것이 좋다.

다음 그림에서 보다시피, G1 GC는 바둑판의 각 영역에 객체를 할당하고 GC를 실행한다. 그러다가, 해당 영역이 꽉 차면 다른 영역에서 객체를 할당하고 GC를 실행한다. 즉, 지금까지 설명한 Young의 세가지 영역에서 데이터가 Old 영역으로 이동하는 단계가 사라진 GC 방식이라고 이해하면 된다. G1 GC는 장기적으로 말도 많고 탈도 많은 CMS GC를 대체하기 위해서 만들어 졌다.JavaGarbage6

그림 6 G1 GC의 레이아웃(이미지 출처: "The Garbage-First Garbage Collector" (TS-5419), JavaOne 2008, p. 19)

G1 GC의 가장 큰 장점은 성능이다. 지금까지 설명한 어떤 GC 방식보다도 빠르다. 하지만, JDK 6에서는 G1 GC를 early access라고 부르며 그냥 시험삼아 사용할 수만 있도록 한다. 그리고 JDK 7에서 정식으로 G1 GC를 포함하여 제공한다.

그러나 JDK 7을 실서비스에서 사용하려면 많은 검증 기간(1년은 필요하다는 생각이다)을 거쳐야 할 것으로 보이기 때문에, G1 GC를 당장 사용하고 싶어도 더 기다리는 것이 좋다는 것이 개인적인 생각이다. JDK 6에서 G1 GC를 적용했다가 JVM Crash가 발생했다는 말도 몇 번 들었기에 더더욱 안정화될 때까지 기다리는 것이 좋겠다.

마치며

이번 글에서는 Java의 GC에 대해서 아주 간단하게(?) 살펴보았다. 다음 글에서는 Java의 GC 상황을 모니터링하는 방법과 GC 튜닝 방법을 알아볼 예정이다.

마지막으로 한 가지 더 말하고 싶은 것이 있다. 어떤 서비스에서 A라는 GC 옵션을 적용해서 잘 동작한다고 그 GC 옵션이 다른 서비스에서도 훌륭하게 적용되어 최적의 효과를 볼 수 있다고 생각하지 말라는 것이다.

만약 애플리케이션에서 만들어지는 모든 객체의 크기와 종류가 같다면 회사에서 사용하는 모든 WAS의 GC 옵션을 동일하게 설정할 수 있다. 하지만, 각 서비스의 WAS에서 생성하는 객체의 크기와 생존 주기가 모두 다르고, 장비의 종류도 다양하다. WAS의 스레드 개수와 장비당 WAS 인스턴스 개수, GC 옵션 등은 지속적인 튜닝과 모니터링을 통해서 해당 서비스에 가장 적합한 값을 찾아야 한다. 이 이야기는 필자의 경험에서 나온 이야기가 아니고, 2010년 JavaOne에서 Oracle JVM을 만드는 엔지니어들이 한 말이다.

참고 자료

이 글의 내용과 그림은 다음의 자료를 참고했다.

출처: http://d2.naver.com/helloworld/1329


'Programing > Java' 카테고리의 다른 글

Java Reference와 GC  (0) 2016.02.29
Effective Java - Reference  (0) 2016.02.29
Wrapper클래스,박싱(boxing),언박싱(unboxing)  (0) 2015.11.15
Collection  (0) 2015.11.15
JAVA 실행 과정  (0) 2015.11.14

OSI 모형(Open Systems Interconnection Reference Model)은 국제표준화기구(ISO)에서 개발한 모델로, 컴퓨터 네트워크 프로토콜 디자인과 통신을 계층으로 나누어 설명한 것이다. 일반적으로 OSI 7 계층 모형이라고 한다.

OSI/IP 모형

7. 응용 계층(Application)

NNTP  · SIP  · SSI  · DNS  · FTP  · 고퍼  ·HTTP  · NFS  · NTP  · SMPP  · SMTP  ·DHCP  · SNMP  · 텔넷  · (더 보기)

6. 표현 계층(Presentation)

MIME  · XDR  · TLS  · SSL

5. 세션 계층(Session)

지명 파이프  · 넷바이오스  · SAP  · SIP
4. 전송 계층(Transport)
TCP  · UDP  · SCTP  · DCCP

3. 네트워크 계층(Network)

IP  · ICMP  · IPsec  · IGMP  · IPX  · 애플토크
2. 데이터 링크 계층(DataLink)
ARP  · CSLIP  · SLIP  · 이더넷  · 프레임 릴레이  · ITU-T G.hn DLL  · L2TP  · PPP  ·PPTP
1. 물리 계층(Physical)

RS-232  · RS-449  · RS-485  · V.35  · V.34 · I.430  ·

I.431  · T1  · E1  · POTS  · SONET/SDH  ·OTN  · DSL  · 802.11a/b/g/n PHY  · ITU-T G.hn PHY  · 이더넷  · USB  · 블루투스


 모델은 프로토콜을 기능별로 나눈 것이다. 각 계층은 하위 계층의 기능만을 이용하고, 상위 계층에게 기능을 제공한다. '프로토콜 스택' 혹은 '스택'은 이러한 계층들로 구성되는 프로토콜 시스템이 구현된 시스템을 가리키는데, 프로토콜 스택은 하드웨어나 소프트웨어 혹은 둘의 혼합으로 구현될 수 있다. 일반적으로 하위 계층들은 하드웨어로, 상위 계층들은 소프트웨어로 구현된다.

계층 1: 물리 계층

물리 계층(Physical layer)은 네트워크의 기본 네트워크 하드웨어 전송 기술을 이룬다. 네트워크의 높은 수준의 기능의 논리 데이터 구조를 기초로 하는 필수 계층이다. 다양한 특징의 하드웨어 기술이 접목되어 있기에 OSI 아키텍처에서 가장 복잡한 계층으로 간주된다.

계층 2: 데이터 링크 계층

데이터 링크 계층(Data link layer)은 포인트 투 포인트(Point to Point) 간 신뢰성있는 전송을 보장하기 위한 계층으로 CRC 기반의 오류 제어와 흐름 제어가 필요하다. 네트워크 위의 개체들 간 데이터를 전달하고, 물리 계층에서 발생할 수 있는 오류를 찾아 내고, 수정하는 데 필요한 기능적, 절차적 수단을 제공한다. 주소 값은 물리적으로 할당 받는데, 이는 네트워크 카드가 만들어질 때부터 맥 주소(MAC address)가 정해져 있다는 뜻이다. 주소 체계는 계층이 없는 단일 구조이다. 데이터 링크 계층의 가장 잘 알려진 예는 이더넷이다. 이 외에도 HDLC나 ADCCP 같은 포인트 투 포인트(point-to-point) 프로토콜이나 패킷 스위칭 네트워크나 LLC, ALOHA 같은 근거리 네트워크용 프로토콜이 있다. 네트워크 브릿지나 스위치 등이 이 계층에서 동작하며, 직접 이어진 곳에만 연결할 수 있다.

계층 3: 네트워크 계층

네트워크 계층(Network layer)은 여러개의 노드를 거칠때마다 경로를 찾아주는 역할을 하는 계층으로 다양한 길이의 데이터를 네트워크들을 통해 전달하고, 그 과정에서 전송 계층이 요구하는 서비스 품질(QoS)을 제공하기 위한 기능적, 절차적 수단을 제공한다. 네트워크 계층은 라우팅, 흐름 제어, 세그멘테이션(segmentation/desegmentation), 오류 제어, 인터네트워킹(Internetworking) 등을 수행한다. 라우터가 이 계층에서 동작하고 이 계층에서 동작하는 스위치도 있다. 데이터를 연결하는 다른 네트워크를 통해 전달함으로써 인터넷이 가능하게 만드는 계층이다. 논리적인 주소 구조(IP), 곧 네트워크 관리자가 직접 주소를 할당하는 구조를 가지며, 계층적(hierarchical)이다.

서브네트의 최상위 계층으로 경로를 설정하고, 청구 정보를 관리한다. 개방형 시스템들의 사이에서 네트워크 연결을 설정, 유지, 해제하는 기능을 부여하고, 전송 계층 사이에 네트워크 서비스 데이터 유닛(NSDU : Network Service Data Unit)을 교환하는 기능을 제공한다.

계층 4: 전송 계층

전송 계층(Transport layer)은 양 끝단(End to end)의 사용자들이 신뢰성있는 데이터를 주고 받을 수 있도록 해 주어, 상위 계층들이 데이터 전달의 유효성이나 효율성을 생각하지 않도록 해준다. 시퀀스 넘버 기반의 오류 제어 방식을 사용한다. 전송 계층은 특정 연결의 유효성을 제어하고, 일부 프로토콜은 상태 개념이 있고(stateful), 연결 기반(connection oriented)이다. 이는 전송 계층이 패킷들의 전송이 유효한지 확인하고 전송 실패한 패킷들을 다시 전송한다는 것을 뜻한다. 가장 잘 알려진 전송 계층의 예는 TCP이다.

종단간(end-to-end) 통신을 다루는 최하위 계층으로 종단간 신뢰성 있고 효율적인 데이터를 전송하며, 기능은 오류검출 및 복구와 흐름제어, 중복검사 등을 수행한다.

계층 5: 세션 계층

세션 계층(Session layer)은 양 끝단의 응용 프로세스가 통신을 관리하기 위한 방법을 제공한다. 동시 송수신 방식(duplex), 반이중 방식(half-duplex), 전이중 방식(Full Duplex)의 통신과 함께, 체크 포인팅과 유휴, 종료, 다시 시작 과정 등을 수행한다. 이 계층은 TCP/IP 세션을 만들고 없애는 책임을 진다.

통신하는 사용자들을 동기화하고 오류복구 명령들을 일괄적으로 다룬다.

계층 6: 표현 계층

표현 계층(Presentation layer)은 코드 간의 번역을 담당하여 사용자 시스템에서 데이터의 형식상 차이를 다루는 부담을 응용 계층으로부터 덜어 준다. MIME 인코딩이나 암호화 등의 동작이 이 계층에서 이루어진다. 예를 들면, EBCDIC로 인코딩된 문서 파일을 ASCII로 인코딩된 파일로 바꿔 주는 것이 표현 계층의 몫이다.

계층 7: 응용 계층

응용 계층(Application layer)은 응용 프로세스와 직접 관계하여 일반적인 응용 서비스를 수행한다. 일반적인 응용 서비스는 관련된 응용 프로세스들 사이의 전환을 제공한다. 응용 서비스의 예로, 가상 터미널(예를 들어, 텔넷), "Job transfer and Manipulation protocol" (JTM, 표준 ISO/IEC 8832) 등이 있다.

계층 별 예시[편집]

계층기타TCP/IP 스위트SS7AppleTalk 스위트OSI 스위트IPX 스위트SNAUMTS
7 - 응용HL7ModbusSIPHTTPSMTPSNMPFTP,텔넷NFSNTPISUPINAPMAP,TUPTCAPAFP, PAPFTAMX.400X.500DAP APPC 
6 - 표현TDIASCIIEBCDICMIDIMPEGXDR AFPPAP    
5 - 세션FIFO(파이프), 넷바이오스SAPSDPSSLTLSTCP의 세션 관리 부분, ASPADSPZIP NWLinkDLC? 
4 - 전송NetBEUITCPUDPRTPSCTP ATPNBPAEPRTMPTP0, TP1, TP2, TP3, TP4, OSPFSPXRIP  
3 - 네트워크NetBEUI, Q.931IPICMPIPsecARPRIP,BGPMTP-3SCCPDDPX.25 (PLP), CLNPIPX RRC (라디오 리소스 제어)
2 - 데이터 링크이더넷토큰링FDDIPPPHDLC, Q.921, 프레임 릴레이ATMFibre Channel MTP-2로컬토크토큰토크이더토크애플 리모트 액세스PPPX.25 (LAPB), 토큰 버스802.3 프레이밍, 이더넷 II 프레이밍SDLC미디어 접근 제어(MAC)
1 - 물리RS-232V.35V.34, Q.911, T1E110BASE-T,100BASE-TXISDNSONETDSL MTP-1Localtalk on shielded, Localtalk on unshielded (PhoneNet)X.25 (X.21bisEIA/TIA-232EIA-422EIA/TIA-449,EIA-485EIA-530G.703) TwinaxPHY (물리 계층: Physical Layer)


'Major > Network' 카테고리의 다른 글

네트워크 - Transport Layer  (0) 2015.12.09
네트워크 - Application Layer  (0) 2015.12.02
네트워크 - 기본  (0) 2015.12.01
Big-endian vs Little-endian  (0) 2015.11.16
MAC address  (0) 2015.11.16

 자바에는 int, double과 같은 기본형 자료형(primitive type)의 포장 클래스(wrapper class)가 있어서 기본형을 객체로 다루어야 할 경우에 사용할 수 있다. 다음 표에서와 같이 포장 클래스명은 기본형의 첫 문자를 대문자로 바꾸면 된다.( char형과 int형만 이름이 다르다.)


[표 1] 포장 클래스

기본형

포장 클래스

생성 예

boolean

Boolean

Boolean bA = new Boolean(true);

Boolean bB = new Boolean(“false”);

char

Character

Character cA = new Character(‘a’);

byte

Byte

Byte byA = new Byte(10);

Byte byB = new Byte(“127”);

short

Short

Short sA = new Short(1234);

Short sB = new Short(“1234”);

int

Integer

Integer iA = new Integer(1234);

Integer iB = new Integer(“1234”);

long

Long

Long lA = new Long(1234);

Long lB = new Long(“1234”);

float

Float

Float fA = new Float(12.34f);

Float fB = new Float(“12.34f”);

double

Double

Double dA = new Double(12.34);

Double dB = new Double(“12.34”);


생성자는 위와 같이 해당하는 기본형 값을 줄 수도 있고 문자열로 줄 수도 있다. 문자열로 주는 경우 해당 데이터형의 형식에 맞아야 한다.


 박싱(boxing)이란 기본형을 참조형으로 변환하는 것이고 언박싱(unboxing)이란 반대로 참조형을 기본형으로 바꾸는 것이다. 그리고 JDK 1.5부터는 이것을 자동으로 해주는 기능이 추가되었다.


package tut02;
public class Tut02 {
   public static void main(String[] args) {
       Integer iA = new Integer(123);
       Integer iB = new Integer(123);
       
       int ia = (int)iA; //(1) 언박싱(unboxing)
       int ib = iB; //(2) 오토언박싱(auto unboxing)
       Integer iC = (Integer)456; //(3)박싱(boxing)
       Integer iD = ia; //(4)오토 박싱(auto boxing)
   }
}


위 예세서 (1)은 명시적으로 언박싱을 해주는 것이고 (2)는 자동으로 수행해 주는 것이다. 박싱의 경우도 자동으로 처리해 준다. 오토박싱과 오토언박싱은 대응되는 자료형 사이에만 일어난다는 점도 유의해야 한다.


 포장 클래스 객체간 연산도 가능하며 기본형과 포장형 간 연산도 가능하다.


package tut02;
public class Tut02 {
   public static void main(String[] args) {
       Integer iA = new Integer(123);
       Integer iB = new Integer(123);
       
       int ia = (int)iA; //(1) 언박싱(unboxing)
       int ib = iB; //(2) 오토언박싱(auto unboxing)
       Integer iC = (Integer)456; //(3)박생(boxing)
       Integer iD = ia; //(4)오토 박싱(auto boxing)
       
       Integer iE = iA + iB; // 포장형끼리의 연산
       Integer iF = ia - ib; // 기본형끼리의 연산 결과를 오토박싱
       int ic = ia * iB; // 기본형과 포장형 간 연산
   }
}


자바에서는 연산자가 오버로딩되지 않는다는 점을 생각하면 의아할 것이다. 하지만 이 코드는 내부적으로 포장형인 피연산자가 오토언박싱 되어서 기본형 끼리의 연산으로 수행되는 것이라고 이해할 수 있다.


 비교 연산도 가능하지만 내용물의 동치 여부를 검사할 때 ==기호대신 equals() 메소드를 이용해야 한다.


package tut02;
public class Tut02 {
   public static void main(String[] args) {
       Integer ia = new Integer(123);
       Integer ib = new Integer(123);
       Integer ic = new Integer(456);
       System.out.println("ia>=ib:"+(ia>=ib));
       System.out.println("ib>=ic:"+(ib>=ic));
       System.out.println("ia==ib:"+(ia==ib));
       System.out.println("ia.equals(ib):"+ia.equals(ib));
   }
}


ia>=ib:true
ib>=ic:false
ia==ib:false
ia.equals(ib):true


왜냐면 포장형고 객체이기 때문에 ==연산은 두 객체 인스턴스의 참조(주소값)을 비교하게 되는 것이다. 내용물의 동치 여부는 문자열 객체와 마찬가지로 equals() 메소드를 이용해야 한다.


출처: http://studymake.tistory.com/420

'Programing > Java' 카테고리의 다른 글

Effective Java - Reference  (0) 2016.02.29
Garbage Collection  (0) 2015.11.15
Collection  (0) 2015.11.15
JAVA 실행 과정  (0) 2015.11.14
JVM, JRE, JDK의 차이  (0) 2015.10.11

  1. Collection

    Collection 인터페이스를 상속받아 List와 Set 인터페이스가 된다. List는 순서가 있는 Collection, 그리고 List는 Data 중복을 허락한다. 하지만 Set은 순서의 의미가 없으며 Data를 중복해서 포함할 수 없다.

  • List 인터페이스의 특징
    • 순서가 있는 Collection.(이 순서는 삽입된 순서를 의미한다.)
    • Data를 중복해서 포함할 수 있다.
    • Stack의 특징
      • Data의 삽입과 추출이 후입선출(Last-In First-Out) 구조로 되어 있다.
      • push() method : Data 삽입할 때 사용
      • pop() method : Data 추출할 때 사용
      • peek() method : 추출할 Data를 삭제하지 않고 Data만을 가져 올 때 사용
      • search() method : Stack으로부터 Data를 검색할 때 사용
    • Vector의 특징
      • 자동으로 동기화를 보장해준다.
      • ArrayList에 동기화가 보장되도록 최적화한 클래스이다.
      • JAVA 5.0 이 후로는 AutoBoxing/AutoUnBoxing을 지원한다.
        • AutoBoxing이란? 기본 Data 타입을 Wrapper 클래스형의 객체로 자동으로 변환해주는 기능. AutoUnBoxing은 AutoBoxing의 반대 개념
        • JAVA 1.4까지

Vector v = new Vector();
v.addElement(new Integer(100));

  • JAVA 5.0이후

Vector v = new Vector();
v.addElement(100); // AutoBoxing 발생, 자동으로 Wrapper class인 Integer로 변경

  • addElement() method : Data를 삽입할 때 사용
  • elementAt() method : Data를 추출할 때 사용, Index에 해당하는 객체를 얻어냄
  • size() method : Vector 내에 존재하는 객체의 수를 얻어낼 대 사용
  • insertElementAt() method : Vector 내에 중간 삽입할 때 사용
  • setElementAt() method : Vector 내에 존재하는 Data를 수정할 때 사용
  • indexOf() method : Vector 내에 Data를 검색할 때 사용, Index를 반환
  • contains() method : Data의 존재 유무를 알기 위해 사용.
  • ArrayList의 특징
    • 동기화를 보장해주지 않는다.
    • 배열에 동적 메모리 증가 기능을 구현한 클래스이다.
    • 동기화 지원 방법 : List list = Collections.synchronizeList(new ArrayList(…));
    • add() method : Data 삽입할 때 사용
    • get(0 method : Data 추출할 때 사용
    • toArray() method : ArrayList로부터 배열 얻어낼 때 사용
    • contains() method : Data의 존재 유무를 알기 위해 사용
    • size() method : ArrayList의 요소 개수를 얻어낼 때 사용
  • Set 인터페이스의 특징
    • 집합적인 개념의 Collection
    • 순서의 의미가 없다.
    • Data를 중복해서 포함할 수 없다.
    • HashSet의 특징
      • add() method : Data 삽입할 때 사용
      • next() method : Data 추출할 때 사용
        • HashSet의 Data 추출은 Iterator을 이용하면 된다. Iterator는 Collection내의 모든 Data에 접근할 수 있는 특징이 있다. 그리고 Data의 마지막에 상관하지 않고 검색하기 위한 인터페이스이다. Set의 Iterator() method로 Iterator를 얻어 낼 수 있으며, Iterator의 hasNext() method를 이용해서 Data 끝을 만날 때까지 next() method를 호출해서 Data를 추출할 수 있다.

Iterator<String iter = set.iterator();
while(iter.hasNext()) {
String temp = iter.next();

System.out.print(temp + ", ");
}

  • remove() method : Data를 삭제할 때 사용
  • contains() method : Data의 포함여부를 알기 위해 사용
  • size() method : HashSet의 요소 개수를 얻어낼 때 사용

       

  1. Map

    List와 Set이 순서나 집합적인 개념의 인터페이스라면 Map은 검색의 개념이 가미된 인터페이스이다. Map 인터페이스는 데이터를 삽입할 때 Key와 Value의 형태로 삽입되며, Key를 이용해서 Value를 얻을 수 있다.

  • Hashtable, HashMap의 공통점
    • 내부적으로 모두 Hash 기법을 이용한다.
    • Map 인터페이스를 구현하고 있다.
    • Key와 Value를 이용해서 Data를 관리한다.
  • Hashtable, HashMap의 차이점
    • Hashtable은 동기화가 보장된다.
    • HashMap은 동기화가 보장되지 않는다.
    • HashMap의 동기화 지원 방법 : Map m = Collections.synchronizedMap(New HashMap(…));
  • Hashtable, HashMap과 HashSet과의 관계
    • Hashtable과 HashMap은 둘 다 Map 인터페이스를 구현하고 있다.
    • HashSet은 내부적으로 Hash기법을 사용하지만 Set인터페이스를 구현하고 있다.
  • HashMap
    • 객체 생성 : Map<String, Integer> map = new HashMap<String, Integer>();
    • put() method : Data 삽입할 때 사용
    • get() method : Data를 추출할 때 사용, argument값은 Key를 사용
  • Hashtable
    • 객체 생성 : Hashtable<String, Object> h = new Hashtable<String, Object>();
    • put() method : Data 삽입할 때 사용
    • get() method : Data를 추출할 때 사용, argument값은 Key를 사용

   

  1. Sorted

    Set과 Map 인터페이스를 상속받아 정렬 기능이 추가된 SortedSet과 SortedMap 인터페이스가 된다. 그리고 이들은 각각 TreeSet 클래스와 TreeMap 클래스로 구성된다. TreeSet과 TreeMap은 Set과 Map의 기능을 가지고 있으면서 정렬 기능이 가미되었다는 것이 특징이다.

  • Sorted를 지원하지 않는 클래스
    • HashSet, HashMap
  • Sorted를 지원하는 클래스
    • TreeSet, TreeMap
  • TreeMap
    • Key와 Value로 Data를 관리
    • Key를 기준으로 오름차순으로 정렬된다.
    • Map 인터페이스를 상속한 SortedMap 인터페이스를 구현한 클래스
  • TreeSet
    • Set 인터페이스를 상속한 SortedSet 인터페이스를 구현한 클래스
    • 데이터들이 자동으로 오름차순으로 정렬된다.
  • Comparator
    • TreeSet과 TreeMap은 사용자가 직접 정렬의 방식을 지정할 수 있다.
    • TreeSet과 TreeMap은 정렬을 위한 Comparator 인터페이스를 구현하면 된다.
    • TreeSet에 Data를 집어 넣으면 기본적으로 오름차순(Ascending) 정렬이 되지만 그것도 문자열이나 기본 데이터 타입과 같은 단순한 것에만 해당된다. 이에 사용자가 직접 비교법을 넣어주기 위해 사용하는 것이 Comparator 인터페이스이다.
    • Comparator의 구현 방법 : Comparator 내부에 compare() method를 구현하면 된다.

class Mycomparator<T> implements Comparator<T> {
public int compare(T o1, T o2) {
// 비교방법 구현
}

  • Comparator가 추가된 TreeSet의 생성

TreeSet<Score> tset = new TreeSet<Score>(new MyComparator<Score>());

  • Comparator가 추가된 TreeMap의 생성

TreeMap<Score, String> tset = new TreeMap<Score, String>(new MyComparator<Score>());

  • 일반적인 정렬기능의 사용
    • HashSet이나 HashMap을 정렬 기능이 지원되는 TreeSet이나 TreeMap으로 변환해서 사용
    • HashSet을 이용한 TreeSet 생성

Set<String> set = new HashSet<String>();
...
TreeSet<String> ts = new TreeSet<String>();
ts.addAll(set);

  • HashMap을 이용한 TreeMap 생성

Map<String, Integer> map = new HashMap<String, Integer>();
...
Map<String, Integer> sortedMap = new TreeMap<String, Integer>();
sortedMap.putAll(map);


출처: http://withwani.tistory.com/150

'Programing > Java' 카테고리의 다른 글

Effective Java - Reference  (0) 2016.02.29
Garbage Collection  (0) 2015.11.15
Wrapper클래스,박싱(boxing),언박싱(unboxing)  (0) 2015.11.15
JAVA 실행 과정  (0) 2015.11.14
JVM, JRE, JDK의 차이  (0) 2015.10.11

- interpolation search

- 사전이나 전화번호부를 탐색하는 방법과 같이 탐색 키가 존재할 위치를 예측, 비례식 이용


- 탐색 위치 = (k-list[low]) / (list[high]-list[low] * (high-low) + low

- 시간복잡도: 



'Algorithm' 카테고리의 다른 글

Dynamic Programming  (0) 2016.04.04
에라토스테네스의체  (0) 2016.03.22
알고리즘 - 이진 탐색  (0) 2015.11.14
알고리즘 - 순차 탐색  (1) 2015.11.14
알고리즘 - 위상 정렬  (0) 2015.11.14

- binary search

- 정렬된 배열에서의 탐색

- 재귀 호출, 반복을 이용하여 구현 가능 

- 시간복잡도: 


'Algorithm' 카테고리의 다른 글

에라토스테네스의체  (0) 2016.03.22
알고리즘 - 보간 탐색  (0) 2015.11.14
알고리즘 - 순차 탐색  (1) 2015.11.14
알고리즘 - 위상 정렬  (0) 2015.11.14
알고리즘 - 플로이드  (0) 2015.11.14

+ Recent posts